2017. február 20., hétfő

Karácsonyi és újévi feladványok megoldásai

A karácsonyi gyufafeladványra húszan küldtek be helyes megoldást vagy megoldásokat. Mindhárom kitűzött verzióra több megoldás is létezik. Azt a bevezető szöveget, hogy ezek az év legnehezebb gyufafeladványai, csak ösztökélésnek szántam, egyébként mindegyik feladvány megoldható volt kevesebb gyufaszál áthelyezésével. Aki kevesebbel meg tudta oldani, vagy több megoldást küldött, plusz pontot kapott. Egyesek segédprogramot is írtak, amivel automatikusan kerestek megoldásokat. A program persze csak bizonyos sémák alapján tud keresni, amit beleprogramoztak, így a kreatívabb megoldásokat, amikre a program írója nem gondolt, azt nem tudja megtalálni. Az alábbiakban néhány érdekesebb megoldást szedtem össze.

Egy sokak által talált megoldás nulla használatával és három gyufaszál áthelyezésével:
9+87+654+3210+9 → 0+87+694+4210+9 = 5000

Egy olyan megoldás négy gyufaszál áthelyezésével, ahol háromjegyű számból négyjegyűt csinálunk:
9+87+654+3210+9 → 3+37+6641+3310+9 = 10000

10000-re van több megoldás három gyufaszál áthelyezésével is:
9+87+654+3210+9 → 3+67+654+9270+6 = 10000
9+87+654+3210+9 → 6+61+654+9270+9 = 10000

Egy kreatív lehetőség négy gyufaszál áthelyezésével, amiben egy új számot, illetve számjegyet, új sorba rakunk:
9+87+654+3210+9 → 4+87+694+9210+4+1 = 10000

Egy másik kreatív lehetőség a negatív számok használata, ráadásul így a kitűzöttnél kettővel kevesebb gyufaszállal is megoldható volt az Ördöglakat blogon kitűzött feladvány:
1+23+456+7890+1 → -7-23+156+1890+1 = 2017

Van azonban 2017-re negatív számok nélkül is megoldás három gyufaszál áthelyezésével:
1+23+456+7890+1 → 1+29+956+1030+1 = 2017

Egy saját megoldás, amit mások nem találtak meg, amikor az egyik számjegyet kettéválasztjuk, és a nyolcas számjegyből két egyes lesz:
9+87+654+3210+9 → 9+1117+655+3210+9 = 5000

Van egy különleges megoldás, ami négy gyufaszál áthelyezésével működik, de működhet hárommal is, ha az egyes számjegyet a számjegyhez tartozó mező jobb oldalára rendezve jelenítjük meg kezdetben, ahogy egyébként szokásos. Ekkor a 10-es részt kevesebb gyufaszál áthelyezésével is át lehet alakítani 41-re összekötve az egyes számjegyet a nulla bal oldalával:
9+87+654+3210+9 → 9+87+1654+3241+9 = 5000

Két gyufaszál áthelyezésével is lehet érdekességeket kihozni:
9+87+654+3210+9 → 5+81+694+9210+9 = 9999

9999-et egyébként közészúrással is ki lehet hozni, ami még egy további módszer három gyufaszál áthelyezésével:
9+87+654+3210+9 → 9+217+554+9210+9 = 9999

És van még megoldás sok más számra is, például két gyufaszál áthelyezésével 4000-re. Három gyufaszál áthelyezésével 3000, 6000, 7777, 8888 kihozható. Négy áthelyezéssel pedig 2000, 8000, 2222, 3333, 4444, 5555, 6666 megkapható.


Most pedig térjünk át az újévi kalkulátoros feladvány megoldásaira. Ezekből szintén rengeteg van. Ennél is voltak néhányan, akik programot írtak a keresésre, de olyan sok lehetőség van, hogy a legtöbben nem tudták az összeset végigpróbálgatni program segítségével sem, ezért csak bizonyos sémákat vettek végig, amikkel várható volt, hogy sok megoldást találnak. Meg kell jegyezni, hogy mindenkinek megadtam a maximális pontot, aki bármilyen megoldást talált, de a duplapluszkreatív pontversenyben, azaz plusz pontokban csak az kaphatot maximálisat, aki legalább egy szép megoldást is küldött. Szép megoldásnak én azt nevezem, amiben nincsen nullával vagy eggyel való szorzás, eggyel való osztás, és nullát sem osztjuk semmivel, továbbá nem kezdődik nullával többjegyű szám. Még szebb továbbá az olyan megoldás, ami egyszerre működőképes a kétféle számológép típussal.

Néhány szép megoldás azonos sémára P. G. beküldőtől , ahol a számológép típusa is lényegtelen:
95*76/4+230-18 = 2017
96*78/3-520+41 = 2017
92*76/4+350-81 = 2017
72*69/4+810-35 = 2017
36*87/2+541-90 = 2017

Ugyancsak szép megoldások másoktól, nagyon hasonló sémára:
507*16/4-39+28 = 2017
1027*8/4+56-93 = 2017

Pavkoni nevű beküldő igazán átfogó elemzést csinált programmal. Sikerült végignéznie az összes lehetőséget. Ennek számossága: 10!*126*4! = 10973491200, ahol 126 = 9*8*7*6/(4*3*2*1) annak a számossága, hogy hányféleképpen szúrhatunk be tíz szám közé négy operátort, ha a mínusz jelet előjelként nem használjuk. A program kivette a nullával kezdődő számok esetét, így 25362 megoldást talált a részeredménnyel tovább számoló, és 33480-at a végén kiértékelős kalkulátorra. Meg kell azonban jegyezni, hogy a program különböző megoldásnak tekinti az alábbi lényegében ekvivalens felírásokat:
98/7-65+1034*2 = 2017
98/7-65+2*1034 = 2017

Pavkoni megvizsgálta azt is, hogy kevesebb számjeggyel hogyan oldható meg 2017 felírása. Azt találta, hogy 0-tól 6-ig használva a számjegyeket van 5+8 megoldás, de a hatos számjegyet elhagyva már nem megoldható a feladat. Ezen kívül Pavkoni azt is megnézte, hogy melyik a legkisebb pozitív egész szám, amihez nincsen megoldás. A részeredménnyel tovább számolós esetben ez a szám a 727234, míg a végén kiértékelős esetben 171720.

A pontverseny állása az első két fejtörőre küldött megoldások kiértékelése után megtalálható ebben a táblázatban: itt.

Nincsenek megjegyzések:

Megjegyzés küldése